Water’s role in the rise and fall of the Roman Empire

Beef Central, 01/01/0201
The Roman aqueduct near the Luynes in Indre-et-Loire, central France, is the only remnant of the ancient city of Malliacum. Water management infrastructure such as the Luynes aqueduct were central to providing the Romans with stable water supplies in regions with variable and dry climates.

The Roman aqueduct near the Luynes in Indre-et-Loire, central France, is the only remnant of the ancient city of Malliacum. Water management infrastructure such as the Luynes aqueduct were central to providing the Romans with stable water supplies in regions with variable and dry climates.

Smart agricultural practices and an extensive grain-trade network enabled the Romans to thrive in the water-limited environment of the Mediterranean, a new study shows.

But the stable food supply brought about by these measures promoted population growth and urbanisation, pushing the Empire closer to the limits of its food resources.

The research, by an international team of hydrologists and Roman historians, is published recently in Hydrology and Earth System Sciences, an open access journal of the European Geosciences Union (EGU).

Stretching over three continents and persisting for many centuries, the Roman Empire was home to an estimated 70 million people.

In such a vast area ensuring a stable food supply was no easy task, particularly given the variable and arid climate of the Mediterranean region. So how did the Romans maintain reliable food supplies to their cities for centuries under such challenging conditions?

To find out, Brian Dermody, an environmental scientist from Utrecht University, teamed up with hydrologists from the Netherlands and classicists at Stanford University in the US. The researchers wanted to know how the way Romans managed water for agriculture and traded crops contributed to the longevity of their civilisation. They were also curious to find out if these practices played a role in the eventual fall of the Empire.

“We can learn much from investigating how past societies dealt with changes in their environment,” says Dermody. He draws parallels between the Roman civilisation and our own. “For example, the Romans were confronted with managing their water resources in the face of population growth and urbanisation. To ensure the continued growth and stability of their civilisation, they had to guarantee a stable food supply to their cities, many located in water-poor regions.”

In the Hydrology and Earth System Sciences paper, the team focused on determining the water resources required to grow grain, the staple crop of the Roman civilisation, and how these resources were distributed within the Empire. It takes between 1000 and 2000 litres of water to grow one kilo of grain. As Romans traded this crop, they also traded the water needed to produce it – they exchanged virtual water.

The researchers created a virtual water network of the Roman world. “We simulated virtual water trade based on virtual-water-poor regions (urban centres, such as Rome) demanding grain from the nearest virtual-water-rich region (agricultural regions, such as the Nile basin) in the network,” explains Dermody.

The team used a hydrological model to calculate grain yields, which vary depending on factors such as climate and soil type. The authors used reconstructed maps of the Roman landscape and population to estimate where agricultural production and food demand were greatest. They also simulated the trade in grain based on an interactive reconstruction of the Roman transport network, which takes into account the cost of transport depending on factors such as distance and means of transportation.

Their virtual water network indicates that the Romans’ ability to link the different environments of the Mediterranean through trade allowed their civilisation to thrive. “If grain yields were low in a certain region, they could import grain from a different part of the Mediterranean that experienced a surplus. That made them highly resilient to short-term climate variability,” says Dermody.

But the Romans’ innovative water-management practices may also have contributed to their downfall. With trade and irrigation ensuring a stable food supply to cities, populations grew and urbanisation intensified. With more mouths to feed in urban centres, the Romans became even more dependent on trade whilst at the same time the Empire was pushed closer to the limits of their easily accessible food resources. In the long term, these factors eroded their resilience to poor grain yields arising from climate variability.

“We’re confronted with a very similar scenario today. Virtual water trade has enabled rapid population growth and urbanisation since the beginning of the industrial revolution. However, as we move closer to the limits of the planet’s resources, our vulnerability to poor yields arising from climate change increases,” concludes Dermody.



Your email address will not be published. Required fields are marked *

Your comment will not appear until it has been moderated.
Contributions that contravene our Comments Policy will not be published.


  1. Frank Bell, 31/12/2014

    The imbalance in community growth in modern societies parallels the Roman catastrophy………both Argentina and Australia are prime examples of how it is all going wrong .
    Before Peron began to encourage his ‘shirtless ones’ to leave the land behind to live well (?) in BA the Argentine was amongst the most productive and progressive nations of all……self sufficient and sustainable, but sadly lacking in social development and beaurocratic propriety.
    And look at us now…since the early ‘ 70’ s the National enthusiasm for progression has been in decline and there has been a drift of the young away from the regions when we should have been piping water to the inland, working up schemes to make it rain or at least put in more dams…Moree is a fine example of what can be done, if you’ve got water…just as the Romans did.

Get Beef Central's news headlines emailed to you -