

Page: 1 of 3

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Naracoortereport date16 Dec 2014Yarding thange 1249comparison date09/12/2014

Agents combined the split sales, resulting in an increase of over 1,200 head, as they yarded 2,380 head of liveweight and open auction cattle. The full range of trade and processor buyer support was present, along with the usual restocker and feeders, for the last sale of the year. Prices fluctuated throughout the sale due to a very mixed quality offering.

Vealer steers ranged from 185c to 205c, with a high of 228c/kg in an isolated sale. Restocker and feeders paid from 178c to 205c for their replacements, as these cattle were 5c/kg dearer, and more in places. Vealer heifers ranged from 147c to 210c and were up to 8c/kg dearer. Yearling steers also improved by an average of 5c, as they ranged from 155c to 197c, with restockers and feeders very active from 140c to a high of 202c/kg. Yearling heifers also had the same buyer support, with the trade purchasing from 136c to 187c, and restockers and feeders from 130c to 173c/kg as they were firm on last week's rates.

A mixed quality penning of grown steers fell 4c to range from 166c to 194c, with restockers and feeders active from 144c to 194c/kg. Grown heifers ranged from 150c to 182c/kg. A large yarding of mixed quality and varying weight bulls ranged from 142c to 180c for lightweights, with the heavier types returning from 122c to 170c/kg. A large number of cows were offered and these were of very mixed quality and a large range of weights. A slightly smaller number of buyers were active, which lead to a softening in prices for vendors. Restockers were active on suitable lines of lightweight D2 types to turn out, as these ranged from 105c to a high of 138c/kg. Light cows to the trade ranged from 114c to 146c, while the heavier D3 and D4 selection returned vendors from 112c to a top of 162c/kg.

Estimated Carcaso

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Es S		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
Vealer Ste	eer													
200-280	RS	С	3	11	199.0	- 199.0	199.0	N/Q		-		517 -	517	517
280-330	RS	С	3	6	178.0	- 178.0	178.0	3		-		534 -	534	534
		С	3	3	192.0	- 192.0	192.0	N/Q	343	- 343	343	576 -	576	576
330+		В	3	10	195.0	- 228.0	206.1	16	342	- 400	362	693 -	878	754
	RS	В	3	7	191.0	- 195.0	194.4	11		-		683 -	697	685
		С	3	8	185.0	- 199.0	186.8	-3	330	- 355	334	629 -	746	644
	FD	С	3	56	205.0	- 205.0	205.0	21		-		820 -	820	820
	RS	С	3	21	183.0	- 200.0	194.3	14		-		622 -	750	707
				122	178.0	228.0			330	400		517	878	
Vealer He	ifer													
200-280		С	3	3	185.0	- 185.0	185.0	19	330	- 330	330	481 -	481	481
280-330		В	3	8	186.0	- 186.0	186.0	3	332	- 332	332	614 -	614	614
		С	3	26	164.0	- 200.0	187.9	8	298	- 364	342	499 -	660	572
	RS	С	3	7	147.0	- 147.0	147.0	N/Q		-		470 -	470	470
330+		В	3	9	185.0	- 210.0	200.0	18	330	- 375	357	675 -	748	720
		С	3	18	176.0	- 195.0	186.4	7	320	- 355	338	598 -	691	655
	FD	С	3	6	156.0	- 156.0	156.0	N/Q		-		546 -	546	546
		С	4	4	176.0	- 176.0	176.0	N/Q	320	- 320	320	634 -	634	634
				81	147.0	210.0			298	375		470	748	
Yearling S														
0-330	RS	С	2	6	145.0	- 145.0	145.0	N/Q		-		435 -		435
330-400	RS	С	2	13	145.0	- 145.0	145.0	N/Q		-		508 -		508
	RS	С	3	44	140.0	- 202.0	183.6	4		=		476 -	758	671
		С	3	4	156.0	- 156.0	156.0	-26	284	- 284	284	601 -	601	601

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head			
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg	
	FD	С	3	17	180.0	- 202.0	196.8	7	_			720 -		772	
400+	FD	С	3	10	181.0	- 181.0	181.0	N/Q	-			751 -	751	751	
		С	3	25	155.0	- 197.0	183.0	N/Q	282 -	352	332	677 -	846	789	
	RS	С	3	10	176.0	- 182.0	179.0	-6	-			764 -	774	769	
				129	140.0	202.0			282	352		435	846		
Yearling Ho 330-400	eifer	С	3	25	144.0	- 174.0	165.7	2	267 -	322	307	555 -	696	642	
330-400	FD	С	3	3						322	307				
					144.0	- 146.0	145.3	-1	=					540	
	RS	C	3	7	146.0	- 155.0	152.4	10	-			569 -		583	
400+		В	3	3	164.0	- 167.0	165.0	N/Q	304 -	309	306	689 -		704	
	RS	С	2	8	130.0	- 130.0	130.0	N/Q	-			585 -		585	
	RS	С	3	20	156.0	- 173.0	169.7	N/Q	-			663 -		779	
	FD	С	3	2	146.0	- 146.0	146.0	N/Q	-			606 -		606	
		С	3	93	136.0	- 187.0	166.8	-2	252 -		309	571 -		711	
6				161	130.0	187.0			252	346		526	823		
Grown Ste 0-400	er	С	3	1	179.0	- 179.0	179.0	N/Q	326 -	326	326	653 -	653	653	
0 400	FD	С	3	2	155.0	- 181.0	168.0	N/Q	520		320	581 -		653	
	RS	С	3	11	170.0	- 191.0		N/Q	_			680 -		726	
400 F00		С	3	5			181.5	_							
400-500	RS				144.0	- 179.0	151.0	-16	-			720 -		737	
	FD	С	3	43	175.0	- 194.0	184.0	-12	-	225	225	735 -		837	
F00 600		С	3	37	178.0	- 184.0	178.8	1	324 -		325	837 -		868	
500-600		С	3	149	166.0	- 190.0	180.5	-4	302 -	346	328		1116	1025	
	FD	C	3	21	182.0	- 192.0	183.4	-1	-				1037	967	
	RS	С	3	2	166.0	- 173.0	169.5	N/Q	-			863 -		929	
600-750		С	3	28		- 188.0	181.0	13	284 -		329	1014 -		1127	
C !!a!	e			299	144.0	194.0			284	346		581	1166		
Grown Hei 0-540	ier	С	3	94	150.0	- 182.0	169.7	-1	278 -	337	314	690 -	926	798	
540+		С	3	34		- 176.0	163.8	-10	289 -		303	948 -		987	
5 10 1		C	5	128	150.0 150.0	182.0	103.0	10	209 - 278	337	303	690	1030	507	
Manufactu	ring Ste	eer		120	_55.0	102.0			_, 0	33,		050	_000		
0-540	5 - 5.	C	3	1	138.0	- 138.0	138.0	N/Q	265 -	265	265	725 -	725	725	
				1	138.0	138.0			265	265		725	725		
Cows															
400-520	RS	D	2	48	105.0	- 138.0	127.2	N/Q	-			525 -	692	657	
		D	2	49	114.0	- 132.0	121.7	N/Q	265 -	307	283	593 -	666	631	
		D	3	6	117.0	- 146.0	131.5	N/Q	249 -	311	280	608 -	759	684	
520+		С	3	49	146.0	- 150.0	147.1	N/Q	311 -	319	313	818 -	876	849	
	RS	D	2	21	125.0	- 127.0	125.9	N/Q	-			667 -	675	671	
		D	2	91	109.0	- 137.0	125.2	N/Q	254 -	319	291	572 -	743	674	
		D	3	394	112.0	- 154.0	146.1	N/Q	238 -	328	311	638 -	900	836	
		D	4	123	118.0	- 162.0	152.4	N/Q	236 -	324	305	755 -	972	917	

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
0-450		С	3	10	170.0	- 170.0	170.0	N/Q	298 -	298	298	595 -	595	595
450-600		С	3	34	142.0	- 180.0	167.2	N/Q	258 -	321	301	738 -	966	838
600+		В	3	4	155.0	- 162.0	157.5	N/Q	277 -	287	283	1175 -	1264	1220
		С	3	41	122.0	- 170.0	156.8	N/Q	226 -	309	284	885 -	1377	1161
				89	122.0	180.0			226	321		595	1377	

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder Disclaimer:

© MLA 2014. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.