

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Roma Prime	report date	15 Sep 2011		
Yarding 1026 Change -560	comparison date	08/09/2011		

Fewer cattle than usual were penned with restricted supply and increased demand putting upwards pressure on prices. All the normal buyers were present and operating with strong competition between Queensland processors helping to push prices up across most categories of cattle. Good quality heavy yearling steers added 2c, while local and southern processor buyers battled for bullocks with price averages also jumping 2c/kg. The small numbers of heavy weight yearling heifers to the trade were snapped up by Queensland processors and added 2c/kg. Heavy bullocks jumped 2c/kg, while medium weight grown steers and grown heifers held mostly firm in price. Heavy weight 4 score cows added 1c, with heavy bulls also increased 1c/kg.

Heavy weight yearling steers topped at 207c and averaged 197c, up 2c, while heavy weight yearling heifers averaged 175c, up 2c/kg.

Medium weight grown steers made to 195c and averaged 185c/kg, unchanged on last weeks prices. Bullocks sold to 199c and averaged 189c, up 2c/kg. A few grown heifers averaged 171c, down 1c/kg. A small sample of manufacturing steers average 167c/kg.

Medium weight 3 score cows reached 144c and averaged 135c, down 9c/kg. Medium weight 4 score cows hit 161c and averaged 155c/kg, unchanged on the previous prime sale prices. Heavy weight 4 score cows earned to 169c and averaged 163c, up 1c/kg. Heavy bulls averaged 160c, up 1c/kg.

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				nated Car eight c/k		Estimated \$/Head			
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
Yearling S	teer													
400+		С	4	121	185.2	- 207.2	196.8	2	337 -	377	358	919 -	1154	1020
				121	185.2	207.2	196.8		337	377	358	919	1154	1020
Yearling H	eifer													
330-400		С	3	5	201.2	- 201.2	201.2	N/Q	373 -	373	373	744 -	744	744
400+	FD	С	3	5	178.0	- 178.0	178.0	N/Q	-			774 -	774	774
		С	4	14	174.2	- 175.2	175.1	2	323 -	324	324	906 -	911	910
		D	3	8	155.0	- 155.0	155.0	N/C	287 -	287	287	752 -	752	752
				32	155.0	201.2	174.6		287	373	322	744	911	824
Grown Ste	er													
400-500		С	3	4	177.2	- 177.2	177.2	-1	322 -	322	322	886 -	886	886
		D	4	3	172.2	- 172.2	172.2	7	313 -	313	313	861 -	861	861
500-600		С	4	191	177.2	- 195.2	185.4	N/C	322 -	355	337	927 -	1088	1034
600-750		С	4	177	177.2	- 199.2	189.2	2	322 -	362	344	1116 -	1335	1213
		D	4	15	175.2	- 175.2	175.2	N/Q	319 -	319	319	1104 -	1104	1104
		Е	3	6	148.2	- 148.2	148.2	N/Q	270 -	270	270	919 -	919	919
				396	148.2	199.2	186.0		270	362	338	861	1335	1112
Grown Hei	ifer													
0-540		С	4	34	165.0	- 175.2	169.4	-4	306 -	324	314	841 -	876	856
		D	3	3	150.0	- 150.0	150.0	-5	278 -	278	278	750 -	750	750
		D	4	11	166.2	- 166.2	166.2	9	308 -	308	308	864 -	864	864
540+		С	4	20	171.2	- 171.2	171.2	-1	317 -	317	317	1027 -	1027	1027
		_	4	3	164.2	- 164.2	164.2	-4	304 -	304	304	903 -	903	903
		D	4	3	104.2	- 104.2	104.2	7	50 1	50.		300	500	

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg				Estimated \$/Head		
					Low	High	Avg	Change	Low		High	Avg	Low	High	Avg
540+		С	4	4	167.2	- 167.2	167.2	N/Q	304	-	304	304	1104 -	1104	1104
		D	4	3	150.0	- 150.0	150.0	N/Q	273	-	273	273	1050 -	1050	1050
				7	150.0	167.2	159.9		273		304	291	1050	1104	1081
Cows															
0-400		D	2	7	70.0	- 70.0	70.0	N/Q	152	-	152	152	280 -	280	280
		D	4	9	141.2	- 141.2	141.2	N/Q	277	-	277	277	565 -	565	565
400-520		D	2	19	112.0	- 117.2	112.3	2	244	-	255	244	560 -	586	561
		D	3	23	121.2	- 144.2	134.8	-9	247	-	294	275	630 -	721	685
		D	4	83	144.2	- 161.2	154.8	N/C	283	-	316	304	649 -	838	767
520+		D	4	73	145.2	- 169.2	163.3	1	285	-	332	320	870 -	964	921
				214	70.0	169.2	148.4		152		332	295	280	964	768
Bulls															
0-450	FD	С	3	5	150.0	- 150.0	150.0	N/Q		-			675 -	675	675
450-600		С	3	41	139.2	- 174.2	161.7	5	249	-	311	289	766 -	958	890
		С	4	33	186.2	- 186.2	186.2	N/Q	333	-	333	333	1089 -	1089	1089
600+		С	3	21	135.0	- 170.0	159.7	1	241	-	304	285	878 -	1190	1046
				100	135.0	186.2	168.8		241		333	303	675	1190	978

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder Disclaimer:

© MLA 2011. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.