

Estimated

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Mou	nt Barker	report date	26 Feb 2015		
Yarding Change	1800 526	comparison date	19/02/2015		

It was the first of the one day sales for this season with 1,800 head yarded. Quality was very good with quite a few trade quality cattle available. Cow supplies were strong and included some prime drafts along with some light conditioned lines. Competition from a full field of processors along with solid feeder, restocker and live export interest saw prices generally firm to slightly dearer across most lighter weight categories, while cows and bulls eased by 5c to 10c/kg.

Vealer steers made from 240c to 283c, up 10c and vealer heifers sold from 170c to 243c, back 5c/kg. Yearling steers to feed in the 330kg to 400kg range made 240 to 275c with most 5 to 10c dearer at a 260c/kg average. Yearling heifers in the same weight range made 140c to 254c to feed with the plainer lines from 140c to 231c/kg and equal to last weeks prices. Trade steers made 245c to 259c with trade heifers from 219c to 246c/kg, both types firm.

Grown steer quality was mixed and prices were firm with prices between 222c and 248c/kg. Grown heifers were mostly up by more than 5c, with prices spread between 219c and 246c/kg for the majority. Cow competition was steady with prices easing. Light cows made 140c to 171c and D2 cows sold between 189c and 216c, to be close to 5c/kg cheaper. Heavy cows in better condition made 220c to 233c and were in excess of 5c/kg easier. Bull prices also eased. Heavy bulls made 200c to 235c, with the medium and light weight drafts to live export between 204c and 235c/kg.

15 -- 14/-1-1-1-

Estimated Carcase

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Weight c/kg			\$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
Vealer Ste	er													
200-280	FD	С	2	20	240.0	- 247.0	243.5	N/Q	-			650 -	670	660
280-330	LE	С	2	44	275.0	- 283.0	278.6	11	550 -	566	557	798 -	821	808
				64	240.0	283.0			550	566		650	821	
Vealer Hei	fer													
0-200	FD	D	1	1	120.0	- 120.0	120.0	N/Q	-			234 -	234	234
200-280	FD	С	1	7	163.0	- 189.0	181.6	-47	-			375 -	474	446
	FD	С	2	12	170.0	- 210.0	193.3	N/Q	-			459 -	565	521
	FD	D	1	2	189.0	- 189.0	189.0	N/Q	-			387 -	387	387
280-330	LE	С	2	6	243.0	- 243.0	243.0	N/Q	467 -	467	467	695 -	695	695
	FD	С	2	26	210.0	- 221.0	218.5	-8	-			613 -	673	659
	RS	С	2	15	200.0	- 200.0	200.0	-60	-			566 -	566	566
				69	120.0	243.0			467	467		234	695	
Yearling S	teer													
280-330	LE	С	2	15	263.0	- 263.0	263.0	N/Q	537 -	537	537	828 -	828	828
	FD	С	2	38	240.0	- 275.0	261.3	N/Q	-			739 -	905	840
330-400	FD	С	2	133	240.0	- 267.0	258.9	N/Q	-			799 -	1021	935
	LE	С	2	121	259.0	- 270.0	265.0	N/Q	508 -	547	526	872 -	992	946
		С	2	1	215.0	- 215.0	215.0	N/Q	414 -	414	414	860 -	860	860
	FD	С	3	7	262.0	- 262.0	262.0	N/Q	-			977 -	977	977
400+		С	2	1	240.0	- 240.0	240.0	N/Q	462 -	462	462	1020 -	1020	1020
	LE	С	2	10	256.0	- 256.0	256.0	N/Q	502 -	502	502	1065 -	1065	1065
	FD	С	2	35	249.0	- 264.0	253.7	N/Q	-			998 -	1072	1050
		С	3	12	259.0	- 259.0	259.0	N/Q	518 -	518	518	1098 -	1098	1098
				373	215.0	275.0			414	547		739	1098	

Catogory

Salo Musclo Est

Hoad

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
280-330	FD	С	2	74	140.0	- 247.0	233.4	N/Q	-			462 -	808	726
330-400	FD	С	2	74	166.0	- 254.0	238.8	N/Q	-			594 -	1016	812
400+	LE	С	2	2	250.0	- 250.0	250.0	N/Q	500 -	500	500	1050 -	1050	1050
		С	2	5	235.0	- 235.0	235.0	N/Q	470 -	470	470	982 -	982	982
				155	140.0	254.0			470	500		462	1050	
Grown Ste	er													
0-400	LE	С	2	4	254.0	- 254.0	254.0	N/Q	498 -	498	498	1016 -	1016	1016
		С	2	2	186.0	- 231.0	208.5	N/Q	380 -	471	426	660 -	866	763
100-500		С	2	9	200.0	- 245.0	223.9	N/Q	408 -	470	442	840 -	1176	1037
	FD	С	2	46	217.0	- 251.0	249.7	N/Q	-			1031 -	1205	1148
		С	3	2	250.0	- 250.0	250.0	N/Q	472 -	472	472	1250 -	1250	1250
500-600		С	2	6	222.0	- 229.0	224.7	N/Q	437 -	444	441	1182 -	1321	1235
		С	3	36	245.0	- 254.0	252.7	N/Q	462 -	479	477	1297 -	1463	1401
600-750		С	3	3	248.0	- 248.0	248.0	N/Q	468 -	468	468	1495 -	1495	1495
				108	186.0	254.0			380	498		660	1495	
Grown He	ifer													
)-540		С	2	21	219.0	- 236.0	235.2	N/Q	456 -	472	471	953 -	961	960
		С	3	1	220.0	- 220.0	220.0	N/Q	440 -	440	440	924 -	924	924
540+		С	4	3	239.0	- 246.0	243.7	N/Q	478 -	492	487	1508 -	1625	1547
				25	219.0	246.0			440	492		924	1625	
Cows														
0-400		Е	1	6	171.0	- 171.0	171.0	N/Q	372 -	372	372	681 -	681	681
		Е	2	4	159.0	- 159.0	159.0	N/Q	346 -	346	346	625 -	625	625
	FD	Е	2	5	140.0	- 140.0	140.0	N/Q	-			472 -	472	472
100-520		D	2	68	189.0	- 216.0	206.6	N/Q	402 -	450	439	842 -	1123	983
		D	3	5	217.0	- 217.0	217.0	N/Q	462 -	462	462	1089 -	1089	1089
		E	1	2	146.0	- 146.0	146.0	N/Q	324 -	324	324	686 -	686	686
	FD	Е	2	6	178.0	- 178.0	178.0	N/Q	-			781 -	781	781
		Е	2	9	179.0	- 179.0	179.0	N/Q	389 -	389	389	786 -	786	786
520+		D	2	16	210.0	- 229.0	218.0	N/Q	429 -	469	446	1134 -	1740	1325
		D	3	15	220.0	- 230.0	226.3	N/Q	449 -	460	458	1334 -	1523	1428
		D	4	31	218.0	- 233.0	228.5	N/Q	445 -	469	461	1299 -	1834	1569
				167	140.0	233.0			324	469		472	1834	
Bulls														
)-450	LE	С	2	10	204.0	- 235.0	231.2	12	408 -	470	461	552 -	901	613
150-600		С	2	4	190.0	- 215.0	204.5	N/Q	380 -	414	397	912 -	1129	1072
500+		В	2	1	198.0	- 198.0	198.0	N/Q	367 -	367	367	2075 -	2075	2075
		С	2	7	193.0	- 200.0	197.7	N/Q	363 -	385	371	1710 -	2123	1904
		D	2	2	199.0	- 199.0	199.0	N/Q	376 -	376	376	2050 -	2318	2184
				24	190.0	235.0			363	470		552	2318	

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder DP: Dorper

© MLA 2015. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.