

Ectimated

Page: 1 of 2

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Mount Barker	report date	22 Jan 2015			
Yarding 1688 Change -869	comparison date	15/01/2015			

Numbers decreased significantly after the large sale last week and steer drafts again dominated with close to 62% of the yarding. Quality was very good across the yarding but there were limited numbers of finished drafts suitable for the trade. Competition continued with strong prices offered by all segments of the market and live export buyers were very strong on select lines meeting their requirements. Prices were firm to dearer across the yarding, the reduction in numbers largely responsible, as buyers sought to secure adequate numbers.

Vealer steers made 238c to 286c with the light weight drafts averaging 265c and firm to 6c/kg dearer. Medium weight drafts made 230c to 271c for a 255c average, 3c dearer with the heavy drafts from 235c to 278c and close to 4c/kg dearer. Live export drafts averaged close to 255c/kg.

Estimated Carcaso

Vealer heifers also lifted in price with the light weight drafts between 200c and 223c and up to 13c/kg dearer, largely quality related. Medium weight weaner heifers made 205c to 232c, for 223c/kg average which was firm. Heavy heifers, mostly to feeders made 210c to 237c, for a 226c/kg, to average equal to last week.

Sales to the trade averaged 249c for steers and 223c/kg for heifers, both firming slightly on last week.

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live	e Weight c	/kg			Estimated Carcase Weight c/kg		Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
Vealer Ste	eer													
200-280	RS	С	1	102	238.0	- 286.0	264.9	N/C		-		539 -	770	684
	RS	С	2	4	259.0	- 286.0	267.5	6		-		625 -	701	681
	RS	D	1	7	170.0	- 238.0	211.6	11		-		405 -	555	483
280-330	FD	С	1	3	248.0	- 248.0	248.0	10		-		756 -	756	756
	RS	С	1	64	230.0	- 263.0	250.6	2		-		697 -	829	756
	RS	С	2	110	248.0	- 260.0	253.0	4		-		705 -	839	785
	FD	С	2	78	244.0	- 254.0	250.2	2		-		754 -	817	789
	LE	С	2	86	255.0	- 271.0	260.5	3	500	- 536	510	730 -	858	823
	FD	D	1	1	225.0	- 225.0	225.0	N/Q		=		686 -	686	686
	RS	D	1	1	215.0	- 215.0	215.0	N/Q		=		645 -	645	645
	RS	D	2	11	250.0	- 250.0	250.0	30		-		780 -	780	780
	FD	D	2	3	232.0	- 232.0	232.0	13		=		719 -	719	719
330+	LE	С	2	132	247.0	- 260.0	251.3	N/C	477	- 505	485	821 -	983	907
	FD	С	2	364	235.0	- 278.0	247.5	4		-		814 -	1095	922
	RS	С	2	32	245.0	- 247.0	246.1	-7		-		827 -	889	854
		С	2	8	248.0	- 249.0	248.8	1	459	- 461	461	1011 -	1136	1042
		С	3	20	245.0	- 262.0	247.7	3	454	- 485	459	925 -	1215	1071
	FD	С	3	13	241.0	- 245.0	241.9	3		=		940 -	1041	963
				1039	170.0	286.0			454	536		405	1215	
Vealer He	ifer													
0-200	RS	D	1	2	206.0	- 206.0	206.0	N/Q		-		391 -	391	391
200-280	RS	С	1	48	200.0	- 221.0	214.2	13		-		477 -	585	545
	RS	С	2	19	213.0	- 219.0	216.1	-6		-		565 -	605	590
	FD	С	2	5	200.0	- 223.0	209.2	4		-		516 -	586	544
	RS	D	1	36	195.0	- 214.0	206.7	21		-		439 -	542	484

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
	RS	D	2	3	204.0	- 204.0	204.0	6	_			534 -	534	534
280-330	RS	С	1	23	215.0	- 228.0	221.7	22	_			624 -	695	668
	FD	С	1	13	212.0	- 221.0	216.8	10	_			619 -	694	659
	RS	С	2	120	205.0	- 232.0	221.6	-6	_			596 -	754	677
	FD	С	2	136	211.0	- 231.0	223.6	4	_			649 -	753	693
	RS	D	1	2	160.0	- 190.0	175.0	N/Q	_			518 -	542	530
	RS	D	2	11	195.0	- 214.0	206.7	12	_			570 -	621	600
	FD	D	2	3	195.0	- 195.0	195.0	-7	_			618 -	618	618
330+	FD	С	2	94	210.0	- 238.0	225.8	1	_			706 -	867	779
	RS	С	2	3	224.0	- 224.0	224.0	-15	_			878 -	878	878
		С	2	8	222.0	- 229.0	222.9	N/Q	423 -	436	425	761 -	829	770
	LE	С	2	23	235.0	- 237.0	235.9	N/C	452 -	456	454	789 -	851	806
		С	3	11	215.0	- 235.0	224.2	-9	398 -	443	419	829 -	1046	912
	FD	С	3	33	225.0	- 230.0	227.8	N/C	-			789 -	872	821
	RS	С	3	11	235.0	- 235.0	235.0	N/Q	-			839 -	839	839
				604	160.0	238.0			398	456		391	1046	
Yearling S	Steer													
400+	DA	D	2	1	160.0	- 160.0	160.0	N/Q	314 -	314	314	656 -	656	656
				1	160.0	160.0			314	314		656	656	
Bulls														
0-450	LE	С	1	6	210.0	- 250.0	238.3	28	404 -	500	471	550 -	798	627
		С	1	2	190.0	- 190.0	190.0	N/Q	373 -	373	373	523 -	523	523
	FD	С	1	1	190.0	- 190.0	190.0	N/Q	-			608 -	608	608
		С	2	1	198.0	- 198.0	198.0	N/Q	381 -	381	381	792 -	792	792
	LE	С	2	4	240.0	- 250.0	242.5	14	453 -	510	467	563 -	708	672
				14	190.0	250.0			373	510		523	798	

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder DP: Dorper

© MLA 2015. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.