

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Wodonga report date 30 Jul 2013 Yarding Change comparison date 23/07/2013

Numbers were similar in a very good quality yarding with the regular contingent of domestic buyers operating along with increased export demand on well finished lines of heavy bullocks. Local restockers were in attendance and operating across all plainer lines of secondary yearlings. Young cattle suitable for the trade were well represented and incorporated in the offering were several pen lots of outstanding supplementary fed yearlings. Heavy grown steers and bullocks were in reasonable supply however it was a very mixed selection of grown heifers offered with all weights and grades represented.

The regular gallery of domestic buyers competed over an excellent selection of trade cattle. Prices for medium weight trade steers were up to 5c/kg dearer while the medium weight heifers sold firm to slightly cheaper. Medium weight trade heifers sold to an average price of 180.6c, while the steer portion averaged 198.1c/kg. Feeder steers were in reasonable supply however not all lot feeders operated, and competition was generally steady with C2 medium weight steers averaging 183.1c/kg. Vealers were in short supply and quality improved which attracted stronger demand from several buyers. European veal and their crosses met good competition resulting in a dearer trend, most sales ranged from 182c to 218c/kg.

A good quality selection of grown cattle sold to increased export competition along with the usual domestic buyers. Prices strengthened for well finished milk and two tooth lines resulting in prices lifting up to 3c/kg. Bullocks over 600kg averaged 192.5c and most of the C3 and C4 pens ranged from 172c to 200c/kg.

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg			Estimated Carcase Weight c/kg			Estimated \$/Head				
					Low	High	Avg	Change	Low		High	Avg	Low	High	Avg
Vealer Ste	er														
280-330		В	2	32	192.0	- 211.0	193.3	N/Q	343	-	377	345	555 -	671	599
	RS	С	2	6	185.0	- 185.0	185.0	N/Q		-			577 -	577	577
330+		В	2	29	190.0	- 218.0	199.3	N/Q	339	-	376	354	656 -	862	729
		С	2	16	172.0	- 194.0	177.0	-10	307	-	366	319	621 -	747	644
	FD	С	2	4	178.2	- 178.2	178.2	N/Q		-			615 -	615	615
				87	172.0	218.0	191.0		307		377	343	555	862	650
Vealer Hei	fer														
200-280		С	2	2	156.2	- 156.2	156.2	N/Q	289	-	289	289	414 -	414	414
280-330		В	2	10	182.0	- 190.0	188.4	N/Q	325	-	339	336	564 -	604	596
	FD	С	2	10	157.2	- 157.2	157.2	N/Q		-			454 -	454	454
		С	2	5	165.0	- 175.2	171.1	-15	317	-	324	322	523 -	540	533
330+		В	2	34	188.0	- 215.0	199.0	N/Q	336	-	371	350	688 -	787	728
	FD	С	2	8	168.0	- 173.2	171.9	N/Q		-			575 -	593	580
		С	2	5	175.0	- 175.0	175.0	2	324	-	324	324	590 -	590	590
				74	156.2	215.0	184.3		289		371	341	414	787	626
Yearling S	teer														
330-400		С	2	5	184.0	- 186.0	184.8	N/Q	341	-	344	342	632 -	672	656
	FD	С	2	20	155.0	- 188.2	168.2	-18		-			589 -	712	642
	RS	С	2	6	183.2	- 183.2	183.2	N/C		-			714 -	714	714
		С	3	21	178.0	- 211.2	198.5	N/Q	330	-	377	356	693 -	813	747
400+		В	2	10	205.0	- 205.0	205.0	N/Q	353	-	353	353	918 -	918	918
	FD	С	2	34	178.0	- 197.2	183.1	-10		-			821 -	850	828
	RS	С	2	10	167.2	- 175.0	170.3	-18		-			794 -	858	820
		С	3	196	184.0	- 218.2	198.0	5	329	_	400	358	790 -	977	899

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
	RS	С	3	2	164.2	- 164.2	164.2	N/Q		_		665 -	665	665
		J	J	304	155.0	218.2		, ~	329	400	357	589	977	852
Yearling H	leifer								0_0					
0-330		С	3	4	175.0	- 175.0	175.0	N/Q	313	- 313	313	578 -	578	578
	FD	С	3	12	169.2	- 169.2	169.2	N/Q		_		526 -	526	526
	RS	D	2	4	158.2	- 158.2	158.2	16		_		514 -	514	514
330-400	FD	С	2	43	175.0	- 180.0	178.1	5		_		652 -	701	682
		С	3	73	176.0	- 206.0	186.9	-3	314	- 368	341	665 -	803	709
	FD	D	2	17	150.0	- 155.0	153.2	N/Q		_		534 -	611	572
		D	3	7	165.0	- 165.0	165.0	N/Q	306	- 306	306	658 -	658	658
400+	FD	С	2	17	164.0	- 183.6	177.8	7		_		679 -	749	728
		С	3	112	174.0	- 195.2	180.6	-1	315	- 349	333	703 -	949	824
		С	4	3	182.0	- 182.0	182.0	-4		- 337	337	870 -		870
	RS	D	2	11		- 157.2	157.2	-16		-	-	718 -		718
		D	3	82	148.0	- 167.2	164.3	-10	279	- 310	305	696 -		794
		-	=	385	148.0	206.0	175.1		279	368	326	514	949	744
Grown Ste	er						_, _,.			200			- ·•	•
400-500		С	3	2	172.0	- 172.0	172.0	N/Q	325	- 325	325	791 -	791	791
500-600		С	2	1	168.0	- 168.0	168.0	N/Q	300	- 300	300	949 -	949	949
	FD	С	3	28	185.0	- 188.0	186.5	N/Q		_		931 -	959	945
	RS	С	3	3	178.0	- 178.0	178.0	N/Q		_		1041 -	1041	1041
		С	3	163	172.2	- 196.0	186.4	2	314	- 363	340	884 -	1150	989
		С	4	36	174.0	- 192.0	182.3	-9	322	- 343	332	934 -	1139	1065
		D	3	10	187.2	- 187.2	187.2	N/Q	334	- 334	334	966 -	966	966
600-750		С	3	8	182.0	- 187.2	184.6	-13	334	- 337	336	1107 -	1241	1174
		С	4	170	170.0	- 200.0	192.5	3	315	- 363	347	1044 -	1372	1260
		D	3	7	170.2	- 172.2	170.8	N/Q	315	- 319	316	1103 -	1128	1110
750+		С	2	2	168.2	- 168.2	168.2	N/Q	312	- 312	312	1287 -	1287	1287
		С	4	12	182.0	- 186.0	183.9	8	330	- 337	333	1370 -	1442	1402
				442	168.0	200.0	187.8		300	363	341	791	1442	1113
Grown He	ifer													
0-540		С	3	26	166.0	- 176.0	170.6	N/Q	296	- 314	306	752 -	880	828
		С	4	51	154.6	- 189.2	170.0	N/Q	286	- 350	315	821 -	995	894
		D	2	8	130.0	- 130.0	130.0	-2	250	- 250	250	527 -	527	527
		D	3	23	150.0	- 186.2	166.4	5	278	- 333	306	651 -	978	836
540+		С	3	15	153.0	- 168.0	160.8	-19	283	- 300	294	918 -	974	939
		С	4	27	162.0	- 187.2	170.9	13	300	- 353	314	932 -	1099	969
		D	4	29	154.0	- 168.2	157.2	2	285	- 312	291	906 -	1028	925
				179	130.0	189.2	165.1		250	353	304	527	1099	881
Manufactu	ıring Ste	eer												
0-540	DA	D	2	22	133.2	- 154.0	137.9	-7	266	- 291	272	522 -	755	575
		D	2	37	130.2	- 144.0	141.7	-13	250	- 277	272	500 -	664	620
		D	3	5	147.2	- 154.0	151.3	N/Q	278	- 291	285	545 -	767	678
540+		С	4	10	170.2	- 170.2	170.2	N/Q	304	- 304	304	1363 -	1363	1363
		D	2	34	158.0	- 158.0	158.0	12	298	- 298	298	932 -	932	932

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head Live Weight c/kg					Estimated Carcase Weight c/kg			Es		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
			_											
	DA	D	2	64	148.0	- 162.2	154.5	N/Q	285 -	306	293	801 -	1375	956
		D	3	12	160.2	- 166.0	162.8	1	286 -	307	294	913 -	997	958
		D	4	3	178.2	- 178.2	178.2	N/Q	330 -	330	330	1360 -	1360	1360
				187	130.2	178.2	152.3		250	330	288	500	1375	861

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder **Disclaimer:**

© MLA 2013. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.