

Detailed saleyard report - cattle

Market information provided by MLA's National Livestock Reporting Service

Great Southern Saleyard report date 29 Nov 2012 Yarding 134 comparison date 22/11/2012

The first of this years vealer sales resulted in a moderate total being offered. Quality remained fair with a reasonable spread of numbers across the weight classes for both steers and heifers. Feeder demand on the medium and heavy weights showed a general improvement that lifted prices. The restocker interest on the lighter categories rebounded after the weaker demand recorded last week which also culminating in dearer price levels for both heifers and steers.

Lighter vealer steers to restockers made to 247c as most made closer to 221c as the medium weights averaged 194c/kg. Feeder mostly paid from 193c to 195c with sales to 208c/kg for medium and heavy weights. The feeder purchases of vealer heifers were from 177c to 182c/kg for all weights with a single B muscle heavy weight at 219c/kg. The better quality heifers to restockers were purchased from 170c to 177c/kg.

There were only a small number of yearlings offered with most steers to feeders while the heifer portion were secured by restockers. A limited number of light bulls were also penned.

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg					mated Car Veight c/k			timated Head	
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
Vealer Ste	eer													
0-200	RS	С	1	1	184.0	- 184.0	184.0	N/Q		-		322 -	322	322
200-280	RS	С	1	20	199.0	- 240.0	207.2	2		_		504 -	523	520
	RS	С	2	163	194.0	- 247.0	221.4	9		-		494 -	592	568
		С	2	1	210.0	- 210.0	210.0	N/Q	396	- 396	396	431 -	431	431
280-330	FD	С	1	17	198.0	- 198.0	198.0	N/Q		-		606 -	606	606
	RS	С	1	6	198.0	- 198.0	198.0	N/Q		-		572 -	572	572
	RS	С	2	124	185.0	- 205.0	194.4	-17		-		535 -	643	602
	FD	С	2	106	185.0	- 201.0	195.0	2		-		579 -	647	617
	FD	С	3	14	196.0	- 196.0	196.0	N/Q		-		617 -	617	617
330+		С	2	2	190.0	- 190.0	190.0	N/Q	346	- 346	346	775 -	775	775
	FD	С	2	277	176.0	- 208.0	193.1	7		-		623 -	771	710
	RS	С	2	21	183.0	- 196.0	189.4	-16		-		612 -	688	648
		С	3	2	190.0	- 190.0	190.0	N/Q	346	- 346	346	775 -	775	775
	RS	С	3	18	198.0	- 198.0	198.0	N/Q		-		711 -	711	711
	FD	С	3	67	181.0	- 200.0	193.7	1		-		671 -	732	698
				839	176.0	247.0	199.6		346	396	356	322	775	643
Vealer He	ifer													
0-200		D	2	4	160.0	- 160.0	160.0	N/Q	308	- 308	308	277 -	277	277
200-280		С	2	14	178.0	- 178.0	178.0	N/Q	336	- 336	336	440 -	440	440
	FD	С	2	25	174.0	- 180.0	176.9	14		-		466 -	480	474
	RS	С	2	21	148.0	- 179.0	173.1	17		-		340 -	449	429
	FD	С	3	2	170.0	- 170.0	170.0	N/Q		-		432 -	432	432
		С	3	8	170.0	- 170.0	170.0	N/Q	321	- 321	321	432 -	432	432
	RS	D	1	4	146.0	- 146.0	146.0	25		-		308 -	308	308
	RS	D	2	48	130.0	- 160.0	148.9	N/C		-		291 -	435	369
	FD	D	2	13	161.0	- 168.0	166.4	N/Q		-		435 -	455	451
2012 Maai		D	2	8	155.0	- 155.0	155.0	N/Q	298	- 298	298	415 -	415	415

© 2012 Meat and Livestock Australia Limited

Page: 1 of 2

Category Weight	Sale Prefix	Muscle Score	Fat Score	Head	Live Weight c/kg				Estimated Carcase Weight c/kg			Estimated \$/Head		
					Low	High	Avg	Change	Low	High	Avg	Low	High	Avg
280-330	FD	С	2	112	170.0	- 187.0	177.6	16	_			494 -	585	539
	FD	С	3	39	161.0	- 184.0	173.8	13	_			493 -	580	546
	FD	D	2	40	146.0	- 166.0	156.4	N/Q	_			448 -	496	464
	RS	D	2	21	110.0	- 156.0	149.1	N/Q	_			325 -	445	433
330+	FD	В	2	1	219.0	- 219.0	219.0	N/Q	_			810 -	810	810
	FD	С	2	77	165.0	- 185.0	177.0	N/C	_			546 -	675	615
	RS	С	2	10	171.0	- 171.0	171.0	N/Q	_			621 -	621	621
	RS	С	3	2	170.0	- 170.0	170.0	N/Q	_			634 -	634	634
	FD	С	3	36	165.0	- 193.0	182.4	N/Q	_			650 -	720	682
	FD	D	2	16	145.0	- 171.0	169.1	N/Q	-			551 -	578	573
	FD	D	3	19	169.0	- 170.0	169.1	N/Q	_			585 -	664	604
				520	110.0	219.0	170.1		298	336	320	277	810	521
Yearling S	Steer													
0-330	FD	С	1	4	135.0	- 135.0	135.0	-33	-			378 -	378	378
	RS	D	2	10	126.0	- 126.0	126.0	N/Q	-			389 -	389	389
330-400	FD	С	1	4	162.0	- 162.0	162.0	-15	-			565 -	565	565
	FD	С	2	1	139.0	- 139.0	139.0	N/Q	-			507 -	507	507
400+	FD	С	2	6	141.0	- 153.0	146.0	-32	-			596 -	683	639
		С	2	2	151.0	- 151.0	151.0	N/Q	275 -	275	275	687 -	687	687
				27	126.0	162.0	139.4		275	275	275	378	687	496
Yearling I	leifer													
0-330	RS	D	2	26	100.0	- 103.0	101.7	N/Q	-			258 -	321	295
330-400	FD	D	2	2	150.0	- 150.0	150.0	N/Q	-			600 -	600	600
				28	100.0	150.0	105.1		0	0		258	600	316
Bulls														
0-450	RS	С	1	5	190.0	- 190.0	190.0	61	-			390 -	390	390
	RS	С	2	12	105.0	- 178.0	164.0	24	-			431 -	498	462
				17	105.0	190.0	171.6		0	0		390	498	441

Abbreviations

CATTLE FD: Feeder RS: Restocker GF: Grainfed DA: Dairy PC: Pastoral Cattle SHEEP & LAMB RS: Restocker MR: Merino RM: Restocker Merino 1X: 1st Cross FD: Feeder Disclaimer:

© MLA 2012. No part of this publication may be reproduced in any form or by any means without prior written permission of MLA. MLA makes no representations and to the extent permitted by law excludes all warranties in relation to the information contained in this publication. MLA is not liable to you or to any third party for any losses, costs or expenses, including any direct, indirect, incidental, consequential, special or exemplary damages or lost profit, resulting from any use or misuse of the information contained in this publication. Information contained in this publication has been obtained from a variety of third party sources which have not been verified by MLA.